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The renin-angiotensin system (RAS) is a major regulator 
of blood pressure/ and electrolyte and fluid homeostasis.1-5 

The first step in the renin-angiotensin cascade is the 
production of biologically inactive decapeptide angiotensin 
I (AI) by cleavage of angiotensinogen by renin. AI is 
converted to the potent vasoconstrictor octapeptide an
giotensin II (All) by angiotensin-converting enzyme (ACE). 
Biochemical effects of the active hormone All, such as 
vasoconstriction, aldosterone release, and renal reabsorp-
tion of sodium are thought to be mediated by actions of 
membrane-bound receptors present on various tissues and 
organs such as adrenal cortex, heart, kidney, arterioles, 
and sympathetic nerve endings. 

Inhibition of the RAS6-8 by renin inhibitors,9 ACE 
inhibitors,10 and All receptor antagonists11 continues to 
be the most active area of drug discovery for the treatment 
of hypertension and congestive heart failure. Despite the 
considerable progress made in the design of orally active 
renin inhibitors, the ultimate goal of discovering renin 
inhibitors with adequate oral bioavailability remained 
unachieved until recently.6912 Designs of orally active 
renin inhibitors with good oral bioavailability have recently 
been reported.12 Although ACE inhibitors are highly 
effective and widely used antihypertensive agents, they 
suffer from side effects such as cough and angiodema due 
to elevated levels of bradykinin and substance P caused 
by the inhibition of their cleavage by ACE inhibitors.10'13'14 

An alternate and more direct mode of blocking the RAS 
is by antagonism of the effector hormone All at the receptor 
level. This specific approach to inhibit the RAS offers 
considerable potential for the treatment of hypertension 
with minimal side effects. Peptidic All antagonists such 
as saralasin ([Sar^Ala^AII) have been known for some
time, but their use as therapeutic agents is limited by their 
lack of oral absorption, rapid clearance, and partial agonist 
activity.15 The development of nonpeptide All receptor 
antagonists has attracted much attention.6 The first report 
on the prototype imidazole-based nonpeptide All antag
onists was disclosed by the Takeda group.16 Structural 
modifications of the Takeda lead compound by Du Pont 
led to the discovery of 2-n-butyl-4-chloro-5-(hydroxy-
methyl)-l- [ [2-(lH-tetrazol-5-yl)biphenyl-4-yl] methyl]im-
idazole (2, DuP 753, losartan, Figure 1) which is currently 
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Figure 1. Angiotensin II receptor antagonists. 

undergoing clinical trials.17 A highly potent, orally-active, 
and longer-acting All antagonist 5,7-dimethyl-2-ethyl-3-
[ [2- (Lff-tetrazol-5-yl)biphenyl-4-yl] methyl] imidazo[4,5-
6]pyridine (3, L-158,809, Figure 1), in which the imidazole 
of DuP 753 is replaced with imidazopyridine, has been 
reported by Merck.18 A potent series of All antagonists 
which incorporates triazoles and imidazotriazoles as 
replacements for the heterocycles of 2 and 3 has recently 
been reported.19 While a number of studies have appeared 
in which the imidazole of 2 is varied,20 reports on efficient 
biphenyl-tetrazole replacements are scarce.21 In our 
continuing efforts to discover an efficient bioisostere 
replacement for biphenyl-tetrazole moiety, we have re
cently reported two new series of All receptor antagonists 
in which N-substituted indoles/dihydroindoles and N-
substituted (phenylamino)phenylacetic acids and acyl-
sulfonamides serve as efficient biphenyl-tetrazole re
placements.22,23 We then became interested in developing 
phenoxyphenylacetic acids as a biphenyl-tetrazole mimic 
for 3.24 Herein, we report the discovery of a new generation 
of potent and orally active nonpeptide All receptor 
antagonists (1, Figure 1) derived from (dipropylphenoxy)-
phenylacetic acids. 

Chemistry. Synthesis of (dipropylphenoxy)phenyl-
acetic acids (22-32) is illustrated in Scheme I and II. Methyl 
4-hydroxybenzoate (4) was alkylated with allyl bromide 
using K2CO3 in refluxing acetone to give 5. Claisen 
rearrangement of the allyl aryl ether S in refluxing 1,2-
dichlorobenzene in the presence of a trace amount of 2,6-
di-icrt-butyl-4-methylphenol (BHT) gave the rearranged 
product 6. Methyl 3-allyl-4-hydroxybenzoate (6) was 
alkylated once again with allyl bromide to give allyl aryl 
ether 7 which was subjected to Claisen rearrangement 
conditions (1,2-dichlorobenzene/BHT/reflux) to give 8. 
Methyl 3,5-diallyl-4-hydroxybenzoate 8 was silylated with 
tert-butyldimethylsilyl chloride in the presence of tri-
ethylamine and DMAP to provide the silyl ether 9 which 
upon hydrogenation in the presence of 5% Rh/C as a 
catalyst in ethanol gave the reduced dipropyl derivative 
10. LiAlH4 reduction of 10 in THF afforded the corre
sponding alcohol 11 as a common intermediate for two 
different synthetic routes for the production of (dipro-
pylphenoxy)phenylacetic acids (22-32). In the first 
method, 11 was desilylated with R-Bu4NF in THF to give 
alcohol 12 which was selectively alkylated with various 
a-bromo esters 16 using cesium carbonate in DMF to give 
18 as described in Scheme I. Treatment of various alcohol 
derivatives 18 with Ph3P and CBr4 in CH2CI2 gave the 
corresponding bromides 19. Alkylation of 5,7-dimethyl-
2-ethyl-3H-imidazo [4,5-6] pyridine (2O)18 with aryl bro
mides 19 yielded the esters 21. Saponification of esters 
21 with aqueous LiOH or NaOH in methanol gave the 
desired (dipropylphenoxy)phenylacetic acids (22-32). 
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"(a) K2CO3, CH2=CHCH2Br, acetone, reflux (89%); (b) 1,2-
dichlorobenzene, BHT, reflux (90%); (a) 6 to 7 (87%); (b) 7 to 8 
(94%); (C) t-BuMe2SiCl, Et3N, DMAP, CH2Cl2 (97%); (d) H2, 5% 
Rh/C, EtOH (90%); (e) LiAlH4 (1 M in THF), THF, 0 0C to room 
temperature (92%); (f) H-Bu4NF1THF (88%); (g) Cs2CO3, DMF, 16 
(52-65%); (h) Ph3P, CBr4, CH2Cl2 (68-85%); (i) 20, Cs2CO3, DMF 
(55-72%); (j) 1 N aqueous LiOH/NaOH, MeOH (58-85%). 

Scheme II" 
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' (k) 20, Ph3P, DEAD, THF, 0 0C (82 %); (1) H-Bu4NF, THF (93 %); 
(m) K2CO3, acetone, 16, reflux (80-96%); (n) 1 N aqueous LiOH/ 
NaOH, MeOH (58-85%). 

In an alternate route, the common intermediate 11 was 
coupled with the imidazopyridine 20 under Mitsunobu 
conditions25 (Ph3PZDEADZTHF), foUowed by desilylation 
of the coupled product with ^-Bu4NF in THF to give 13 
as described in Scheme II. The phenol derivative 13 was 
then alkylated cleanly with various a-bromo esters 16 by 
simply refluxing in acetone with K2CO3 to produce the 
corresponding esters 21 which upon saponification yielded 
the corresponding (dipropylphenoxy)phenylacetic acids 
(22-32). 

Various a-bromo esters 16 utilized in the synthesis of 
(22-32) were prepared by two methods as described in 
Scheme III. In method A, substituted aryl aldehydes 14 
were treated with Me3SiCN in CH2CI2 and a trace amount 
of KCN and 18-crown-6 to give trimethylsilyl ethers of 
cyanohydrin adducts (not shown) which were hydrolyzed 
by treatment with gaseous HCl in ethanol to provide the 
corresponding a-hydroxy esters 15. These ethyl a-hy-

Scheme III. Preparation of a-Bromo Esters 16" 
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" Method A: (0) Me3SiCN, KCN, 18-crown-6, CH2Cl2 (84-92%); 
(P) HCl gas, EtOH (82-95%); (q) Ph3P, CBr4, CH2Cl2,0

 0C to room 
temp (76-95%). Method B: (r) MeOH, cat. H2SO4, reflux (75-96%); 
(s) NBS, AIBN, CCl4, reflux (55-72%). 

Table I. ATi (rabbit aorta) and AT2 (rat midbrain) Receptor 
Antagonist Activity of (Dipropylphenoxy)phenylacetic Acids 
(22-32) 

IC50, nM" 

compd 

22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
2» 
3" 

Ri 

H 
2-Me 
2-Cl 
3-Me 
3-Cl 
3-OPh 
3-Ph 
4-Me 
4-Cl 
4-Et 
4-OPh 

ATx 

0.9 
1.2 
0.53 
0.74 
0.75 
0.47 
6.8 
4.0 
2.8 

19 
5.2 

54 
0.54 

AT2 

2600 
7500 
3500 
800 

2300 
1600 
740 
400 
450 
240 

1900 
>30000 
>10000 

0 For racemic mixtures. b Data from ref 26. 

droxyphenylacetates 15 were converted to a-bromo esters 
16 by treatment with Ph3PZCBr4ZCH2Cl2. In method B, 
various phenylacetic acids 17 were converted to their 
corresponding esters (not shown) by refluxing in MeOH 
or EtOH with a catalytic amount of H2SO4. These esters 
were then brominated by refluxing with JV-bromosuccin-
imide (NBS) in CCl4 to give the a-bromo esters 16. 

Biological Results and Discussion. The in vitro 
[125I][SaT1JIe8IAII binding assays of compounds (22-32) 
reported here (Table I) were performed as described by 
Chang et al. using rabbit aorta and rat midbrain as receptor 
sources for ATi and AT2 receptors, respectively.26 The 
relative potencies of the antagonists are expressed as the 
inhibitory concentration (IC50) of the test compound 
required to completely displace 50% of the specifically 
bound [125I][SaT1JIe8IAII from the receptor. The data 
shown in Table I for racemic 22-32 demonstrate that 
(dipropylphenoxy)phenylacetic acid-based All antagonists 
in general exhibit high potency at the ATi receptor subsite; 
the parent compound 22 shows a subnanomolar ATi 
activity (0.9 nM). Substitution at the ortho and meta 
position of the bottom phenyl ring of (dipropylphenoxy)-
phenylacetic acids generally gives antagonists with in-
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Figure 2. Comparison of in vivo activity of 22 with 2 and 3 in conscious normotensive rats. Inhibition of All-induced (0.1 Mg/kg) 
pressor response after iv administration of 22, 2, and 3. n is the number of animals treated. 
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Figure 3. Comparison of in vivo activity of 22 with 2 and 3 in conscious normotensive rats. Inhibition of All-induced (0.1 Mg/kg) 
pressor response after po administration of 22, 2, and 3. n is the number of animals treated. 

creased binding affinity for the ATi receptor. Incorpo
ration of 2-Cl and 3-Cl resulted in subnanomolar ATi 
antagonists 24 (ATiIC50 = 0.53 nM) and 26 (ATx ICBO = 
0.75 nM), respectively. While substitution by 2-methyl 
gave a nanomolar compound 23, incorporation of a 
3-methyl group produced a subnanomolar antagonist 25. 
Further enhancement in the ATi potency was realized 
when a m-phenoxy (3-OPh) group was introduced in 27 
(IC50 = 0.47 nM). Substitution at C-4 (29-32) results in 
a decrease of the ATi binding affinity. These SAR suggest 

that the C-2 and C-3 substituents bind to the hydrophobic 
region of the ATi receptor more effectively than the C-4 
substituents. Comparison of the ATi binding affinities of 
the (dipropylphenoxy)phenylacetic acid-based All an
tagonists with 2 and 3 shows that several subnanomolar 
ATi-selective antagonists (24-27) are equipotent to 3 and 
exhibit higher ATi potency than 2. 

The AT2-receptor binding affinity of these compounds 
(22-32) was increased with substitution at C-3 and C-4 of 
the bottom phenyl ring while C-2 substitution resulted in 
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a decrease in potency (Table I). AT2 binding affinity of 
31 (IC50 = 0.24 nM) is noteworthy in which incorporation 
of C-4 Et not only enhances the AT2 binding affinity but 
decreases the ATi affinity as well. The results presented 
in Table I suggest that lipophilic groups at C-3 and 
particularly at C-4 may be binding to the hydrophobic 
region of the AT2 receptor binding site.27 These obser
vations offer considerable potential for development of 
this new class of compounds into All receptor antagonists 
with balanced ATi/AT2 activity. Although no definitive 
physiological role for the AT2 binding site has, as yet, been 
established, several possibilities have been proposed.28 

Should a physiologically or pharmacologically important 
role for this receptor be uncovered, a balanced receptor 
antagonist may prove to be an important tool for research 
as well as an important therapeutic agent. 

Antagonist 22 was evaluated for in vivo activity by 
determining the inhibition of All-induced pressor response 
in conscious normotensive rats.29 Compound 22 inhibited 
the All-induced pressor response with long duration of 
action (>6 h) when administered at 1.0 mg/kg intrave
nously (Figure 2) and orally (Figure 3) to conscious 
normotensive rats. Comparison of the potent All antag
onist 22 with 2 and 3 in Figures 2 and 3 shows that 22 has 
excellent in vivo activity in rats both in iv and po 
administrations. 

In conclusion, the new design of nonpeptide All 
antagonists disclosed here, which incorporates a (dipro-
pylphenoxy)phenylacetic acid element, serves as a highly-
efficient biphenyl-tetrazole mimic for the potent All 
antagonist 3. Thus, we have discovered a new series of 
orally-active All antagonists with high affinity for ATi 
receptor and considerable potential for balanced affinity 
for the ATi/AT2 receptors. 
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